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1 Introduction

Cryptography is the study of hidden message passing. It is also the story of
Alice and Bob, their shady friends, their numerous and crafty enemies, and
their dubious relationship.

One uses cryptography to mangle a message sufficiently such that only
intended recipients of that message can “unmangle” the message and read it.
We will call messages to be sent plaintext and the mangled message cipher-
text. The process of converting plaintext to ciphertext is called encryption,
and the reverse process is called decryption.

Cryptographers often use the characters of Alice and Bob to illustrate
the methods behind cryptographic systems. A fantastic after-dinner speech
was given at the Zurich Seminar regarding the the private lives of Alice and
Bob, the text of which may be found at

http://www.conceptlabs.co.uk/alicebob.html,

but that’s another story.
Our purpose here is twofold: First, to give a brief overview of the nature

and mechanics of cryptography, elliptic curves, and how the two manage to
fit together. Secondly, and perhaps more importantly, we will be relating the
spicy details behind Alice and Bob’s decidedly nonlinear relationship.

2 Algebra Refresher

In order to speak about cryptography and elliptic curves, we must treat
ourselves to a bit of an algebra refresher. We will concentrate on the algebraic
structures of groups, rings, and fields.

2.1 Groups

A group G is a finite or infinite set of elements together with a binary op-
eration which together satisfy the four fundamental properties of closure,
associativity, the identity property, and the inverse property. The operation
with respect to which a group is defined is often called the “group operation,”
and a set is said to be a group “under” this operation. Elements A,B,C, . . .
with binary operation between A and B denoted AB form a group if:

1. Closure: If A,B ∈ G, then AB ∈ G.
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2. Associativity: For all A,B,C ∈ G, (AB)C = A(BC).

3. Identity: There exists an element I, such that AI = IA = A for all
A ∈ G.

4. Inverse: For every A ∈ G there exists an element B = A−1, such that
AB = BA = I.

2.1.1 Abelian Groups

Abelian groups are groups where all elements in that group commute. That
is, for group G, AB = BA for all A,B ∈ G.

Another important type of group is the cyclic group. Cyclic groups have
at least one element g, the powers of which run through all the elements in
the group. The element g is called a generator, and will prove quite important
later in this paper. We note here that all cyclic groups are abelian, but not
all abelian groups are cyclic.

2.2 Rings

A ring is a set S together with two binary operators + and ∗ (addition and
multiplication, respectively) satisfying the following conditions:

1. Additive associativity: For all a, b, c ∈ S, (a+ b) + c = a+ (b+ c).

2. Additive commutativity: For all a, b ∈ S, a+ b = b+ a.

3. Additive identity: There exists an element 0 ∈ S such that for all
a ∈ S, 0 + a = a+ 0 = a.

4. Additive inverse: For every a ∈ s there exists −a ∈ S such that a +
(−a) = (−a) + a = 0.

5. Multiplicative associativity: For all a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c).

6. Left and right distributivity: For all a, b, c ∈ S, a∗(b+c) = (a∗b)+(a∗c)
and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

This means that a ring is an abelian group under addition.
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2.3 Fields

A field is any set of elements which satisfies the field axioms for both addition
and multiplication and is a commutative division algebra

The field axioms are:
Axiom Addition Multiplication

Commutativity a+ b = b+ a ab = ba
Associativity (a+ b) + c = a+ (b+ c) (ab)c = a(bc)
Distributivity a(b+ c) = ab+ ac (a+ b)c = ac+ bc

Identity a+ 0 = a = 0 + a a · 1 = a = 1 · a
Inverses a+ (−a) = 0 = (−a) + a aa−1 = 1 = a−1a, a 6= 0

2.3.1 Division Algebras

A division algebra is a ring in which every nonzero element has a multiplica-
tive inverse, but multiplication is not commutative. Like rings, a division
algebra is a set S together with two binary operators + and ∗, satisfying the
following:

1. Associativity over + and ∗.

2. Commutativity over +.

3. Identity elements for + and ∗.

4. Inverse for + and ∗.

5. Left and right distributivity.

As we mentioned earlier, fields are division algebras with the additional
feature of being commutative over ∗.

2.3.2 Finite Fields

A finite field is a field with a finite number of elements, also called a Galois
field. The order of a finite field is always a prime or a power of a prime.
For each prime power, there exists exactly one (with the usual caveat that
“exactly one” means “exactly one up to an isomorphism”) finite field GF(pn),
often written as Fpn , or simply Fq. That is, for every prime power q = pn,
there is a field of q elements that is unique (up to isomorphism).
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These finite fields form an abelian group with respect to ∗, and therefore,
as we saw earlier, every finite field has a generator g. That is, an integer g
exists such that the powers of g exhaust all non-zero residue classes mod p.

2.4 Modular Arithmetic

Modular arithmetic (sometimes referred to as clock arithmetic) is much easier
to work with than the “standard” arithmetic we generally use. This system
is based in the notion of congruence and residue classes, which we’ll briefly
address later (the interesting details of which are beyond the scope of this
paper). The main thing to remember is that, rather than using a number
“line,” (Figure 1) modular arithmetic uses a number “circle” (Figure 2).

Figure 1: A Number Line

Figure 2: A Number Circle

Therefore, in our 26 element example above, we would start counting at
0, 1, . . . and continue until we get to 25. The next integer after 25 is 0, using
modular arithmetic (we’ve gone completely around our number circle).

Addition in modular arithmetic works the same way as on the number
line. For example, to add 15 and 18 using “conventional” arithmetic, we
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start at 0, count 15 along the number line, then count 18 more, ending up
at 33 (Figure 3). If we use modular addition, we “wrap around” our number
circle, and end up at 7 (Figure 4).

Figure 3: Addition on a Number Line

Figure 4: Addition on a Number Circle

Multiplication works in the same fashion (multiplication is, after all, re-
peated addition). Therefore, 7 ∗ 4 = 28 using the number line, and is 2 using
our modular system.

2.5 Modular Arithmetic, Continued

What’s especially cool about modular arithmetic is that it complies with the
same axioms as the standard arithmetic we’re used to. To explain this, we
must briefly touch on the notion of congruences and residues.

Two numbers a and b are congruent modulo m iff m|(a − b). We can
represent this as a ≡ b mod m.
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The set of numbers congruent to a modulo m is denoted [a]m. Therefore,
if b ∈ [a]m, then m|(a− b), as a and b have the same remainder after dividing
by m. There are exactly m different sets [a]m, called residue classes (or
equivalence classes), which we will refer to as Z/mZ.

3 Cryptography Basics

Now that we’ve recovered our mathematical sea legs, let’s dive right in to
the cryptographic basics.

3.1 Enciphering

In order for a message to go from plaintext to ciphertext, it must be passed
through an enciphering transformation function, f . These functions take a
plaintext message unit and return a ciphertext message unit. I say “unit”
here, because cryptosystems will often break up messages into easily di-
gestible chunks for handling. We will assume here that f : P → C is in-
jective; that is, there is one (and only one) plaintext message which is the
encryption of any given ciphertext message. If this were not so, one could
potentially decrypt a given ciphertext into more than one plaintext, resulting
in potentially embarassing (and career-threatening) gaffes such as mistaking
BEGIN THE ATTACK with EIGHT FOR DINNER.

3.2 Deciphering

To go from ciphertext to plaintext, we pass the message through a deciphering
transformation, f−1, the inverse of the enciphering transformation function.

Therefore, a cryptosystem can be represented using the notation:

P f−→ C f−1

−→ P .

3.3 Simple Cryptosystems

In order to begin setting up a cryptosystem, we must “enumerate” the set
of all plaintext message units and the set of all ciphertext message units.
Obviously, we don’t go through and count every one of these; we rely on
mathematics to do this for us.
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For example, if we choose the alphabet of our plaintext and ciphertext
message units to be the 26 letter alphabet from A − Z, we can use the
integers from 0, 1, . . . , 25 as their “numerical equivalents.” Or, we may wish
to include a blank space. We can then use 0, 1, . . . , 26, with 26 representing
the extra character (or lack thereof).

We could also choose to enumerate message units using other mathemat-
ical objects, say, points on a curve. But we are getting ahead of ourselves.
Let’s stick to integers for now.

3.3.1 An Example

By now, you’re probably asking yourself, “So where are all the salacious
details about Alice and Bob I’ve been promised?” Well, we’re finally getting
to the good stuff now. However, because we’re going to start out with some
relatively simple examples, our Alice and Bob stories will begin rather tamely.

Alice and Bob wish to devise a method of passing hidden messages back
and forth to each other. They begin by defining a standard message unit to be
a single letter in our 26 letter alphabet. They can therefore enumerate their
alphabet using the integers 0, 1, . . . , 25. Their enciphering transformation
will be some sort of rearranging of these 26 integers.

N.B. In order to make the computation of enciphering and deciphering
a bit more palatable, we can think of the integers above as F26, or Z/qZ,
where q = 26 in this case, as we are really interested in the set of residue
classes of modulo q. When we do this, we can make use of the incredibly
useful properties of finite fields (and their kin) that we saw earlier. There-
fore, our cryptographic operations become the operations of addition and
multiplication mod q, i.e. using modular arithmetic.

3.3.2 Example, Continued

Alice and Bob, using their 26 letter alphabet as above, define P ∈ P =
{0, 1, . . . , 25} to be the plaintext message unit, where P is the set of all
possible plaintext message units. They now define their enciphering trans-
formation function f : P → P to be

f(P ) =

{
P + 5 if x < 21
P − 21 if x ≥ 21

7



This is just an easier way of representing a function that adds 5 mod 26:

f(P ) ≡ P + 5 mod 26.

Usually, the general form of the transformation function looks more like
f : P → C, where C is the set of all possible ciphertext message units.
However, in this simple example, P = C.

Therefore, in order to encipher their (already cryptic) message FOOBAZ,
Alice and Bob first convert from letters to numbers:

FOOBAZ→ 5 14 14 1 0 25,

then apply f :

5 14 14 1 0 25→ 10 19 19 6 5 4,

and convert back to letters, resulting in the “encrypted” message KTTGFE.
To decipher the message, they simply apply f−1, or subtract 3 mod 26,

using the same method as above.
This simple cryptosystem is often referred to as the “Caesar cipher,” as

it was apparently invented by (and used by) Julius Caesar in ancient Rome.

3.4 More Complex Cryptosystems

Obviously, the Caesar cipher would protect Alice and Bob’s messages against
only the most dimwitted (or uninterested) of opponents. They could improve
their simple cryptosystemn by using a transformation of Z/NZ called an
affine map.

3.4.1 Affine Maps

An affine map is any transformation preserving collinearity; that is, all points
originally on a line remain on a line after transformation. Affine maps also
preserve ratios of distances between points; that is, the midpoint of an origi-
nal line segment remains the midpoint after transformation. An affine trans-
formation of Z/NZ is a map F : Z/NZ→ Z/NZ of the general form:

F (p) = Ap+ q,

for all p ∈ Z/NZ where A is a linear transformation of Z/NZ.
Using modular arithmetic, we define our map as

C ≡ aP + b mod N,

where a and b are fixed integers, together forming the enciphering key.
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3.4.2 Example Redux

In order to encrypt the message FOOBAZ using our affine transformation, we
must first choose an enciphering key. Let’s pick a = 9 and b = 24. Our letter
to number conversion yields:

FOOBAZ→ 5 14 14 1 00 25.

When we apply our affine map f , we get

5 14 14 1 00 25→ 17 20 20 7 24 15,

which gives us the message RUUHYP.
Although this presents a potentially more complex problem for the code-

breaker, this cryptosystem is still not all that hard to break. Further com-
plications include the use of digraphs, or treating the message as pairs of
characters, rather than singletons.

As a matter of fact, if we deal with our message in k-graphs, where k > 2,
we make the job of breaking the system quite difficult for the attacker, since
the number of possible k-letter blocks is very large. Of course, their are time-
and space-related issues to be dealt with when deriving these cryptosystems,
but we won’t concern ourselves with that here.

3.5 Classical Cryptosystems

The cryptosystems we have been describing thus far are referred to as classical
(or symmetric or private key) cryptosystems. The sets P and C were fixed
because N was fixed, and the enciphering key KE was the pair (a, b). The
deciphering key KD was also obtained by that same affine map inverted:

P ≡ a−1C − a−1b mod N.

That is, they are cryptosystems in which, once the enciphering algorithm
is known, the deciphering algorithm can be derived in roughly the same order
of magnitude of time as the enciphering algorithm, as all encipherings and
decipherings are based around the same key. Of course, deciphering can
sometimes take a bit longer because of the problems of finding an inverse
modulo N (using the Euclidean algorithm, for instance). But this is a one-
time-only expense, as it is necessary only in order to find the decryption
key.
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We now move into the realm of public key cryptography, where, if the
enciphering time were polynomial in N , and the deciphering time based on
knowledge of the encryption key were 2N (a considerable difference).

4 Public Key Cryptography

An important factor in the security of cryptosystems is the assumption that
all enciphering and deciphering algorithms are publicly known. This means
that the secrecy comes from the keys themselves: we are free to change keys,
revoke keys, and keep keys secret.

As we’ve already seen, using classical (private key) cryptosystems, once
a user knows KE, it is rather easy to derive KD. Using public key cryptog-
raphy, a user who knows how to encrypt a message cannot use KE to find
KD. Well, cannot implies impossibility, and that’s not entirely true. Pub-
lic key cryptography relies on trapdoor functions : functions that are fairly
easy to compute on their own, but f−1 would take a prohibitive amount of
computation to derive without KD. Sounds dubious, doesn’t it?

Let’s take a closer look at the mathematics behind public key cryptosys-
tems.

4.1 Trapdoor Functions

Trapdoor functions are closely related to one-way functions, in that they are
easy to compute, but f−1 is not without some sort of additional information.

An early example of such a function had the passwords and their en-
crypted forms were integers modulo a large prime p, with the “one-way”
function f : Fp → Fp given by a polynomial f(x) which was easy enough to
evaluate, but took an unreasonably long time to invert.

N.B. The word “unreasonable” doesn’t often show up as a basis for rigor-
ous mathematical proof. This brings up the dark secret of modern cryptog-
raphy: what is empirically considered “realistically computable” is key. This
is not, of course, some sort of absolute truth, but is affected by advances in
technology and science. Therefore, what is considered strong cryptography
today, may be child’s play to break in 10 years (see quantum computing).

That said, let’s look on the bright side: the possibility exists that some
trapdoor function may someday be provably one-way. Until that day, how-
ever, we must face the fact that there are no provable public keys, and Alice
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and Bob must rely on empirical evidence, only (a fact which seems to bother
natural scientists not at all).

4.2 Public Key Cryptography: the Basics

The reason this sort of cryptography is called “public key” is because key
required to encrypt message units, KE, can be made publicly available. Be-
cause of the computational infeasability of decrypting a message with knowl-
edge of KE only, this idea works. Therefore, when Alice wishes to pass a
hidden message to Bob without their nemesis Charles being able to read the
message, she simply obtains Bob’s encryption (public) key KEB and uses the
enciphering function on the message with this key. Now, only Bob will be
able to (easily) read this message, as he has kept his decryption (private) key
KDB close to his vest.

Without this information, Charles has a considerable task in front of him
if he wants to compute the inverse of the encryption function (and obtain
the plaintext), unless he has knowledge of some new mathematical method
of computing inverses. If this is the case, all bets are off. However, we will
go on assuming that he got Cs in math and physics in college, and is really
not all that clever after all.

But why is all this necessary in the first place? Couldn’t Alice and Bob
simply meet and agree upon some shared (symmetric) key, and use con-
ventional methods to hide their messages? This is, of course, possible, but
certain facts about their lifestyles may prevent this. For instance, what if
Alice and Bob have never actually met? What if they have never even heard
each other’s voice over the telephone? What if they really don’t trust each
other all that much? These sorts of problems, apart from what they might
say about Alice and Bob’s odd relationship, are just the sorts of things public
key cryptography is good for.

4.3 Why Public Key Cryptography?

Until recently, most users of cryptography were military and/or diplomatic
organizations who, by their very nature, were a small, finite number of indi-
viduals who would share a system of keys distributed internally.

The relatively recent advent of computer network communication has
changed the nature of the average user of cryptography. Now, every time
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you order that book from some .com, do your banking online, or electroni-
cally sign your email, your are using some sort of cryptography. Because we
may require secure communications with many different parties, these par-
ties constantly changing, the use of classical cryptography quickly becomes
unweildy in all but the smallest of networks.

Therefore, new requirements are made of cryptosystems, such as authen-
tication, non-repudiation, message integrity, and distributed trust, which go
beyond mere message hiding.

4.3.1 Authentication

Using public key cryptography, one can identify oneself in such a way as to
eliminate the possibility that someone has usurped your identity. To illustrate
this, we again turn to Alice and Bob.

Alice and Bob have never met, yet somehow (the details are not impor-
tant here) have managed to have safely obtained each other’s public key.
They have previously agreed upon an enciphering transformation f , where
Alice must use fB (the enciphering transformation using Bob’s public key)
to encrypt a message to Bob, and Bob must use fA to send a message to
Alice. As in our earlier examples, we will assume that P = C and are the
same for both Alice and Bob.

Let’s say Alice has come up with some sort of signature S. If Alice wishes
to identify herself to Bob, simply sending Bob the message fB(S) would not
do, since KB is publicly available, and anyone could send such a message.
However if Alice includes in that same message the sub-message created by
the composite function fBf

−1
A (S), when Bob decrypts the message, he will

find an unencrypted part remains (f−1
A (S)). Since the person claiming to

have sent the message was Alice, Bob can apply Alice’s public key, fA, to the
remainder and end up with S. It is impossible for anyone but Alice to have
sent this message, as Alice is the only person with access to f−1

A . This bit,
in effect, becomes Alice’s unforgeable digital signature.

4.3.2 Non-Repudiation

Since Alice and Bob have never met, we can safely assume that their level
of trust is tenuous, at best. Alice wants to be assured that any message sent
by Bob (identified through his digital signature) could not later be falsly
denied by Bob when the Secret Police (or the bank, IRS, their spouses, etc.)

12



somehow find the message and wish to hold someone accountable for its
content. This is called non-repudiation and is extremely important in the
use of public key cryptography.

For instance, if two parties enter into some sort of electronic contract,
both parties have a vested interest in the binding of such a document, and
should things go south, would want to prove the identity of the other. Also,
the use of anonymous, digital cash has been studied recently, that is, money
that has no physical counterpart, but only exists as bits on a machine. Before
accepting this digital money from a customer, a merchant would certainly
want some method of verifying that the government actually did issue this
electronic note.

The same authentication mechanism described in Section 4.3.1 also works
for this purpose. Since no one but Bob could have possibly signed his mes-
sages, it could certainly be proven, given some additional infrastructure, that
the message did indeed originate from Bob.

4.3.3 Message Integrity

Another concern of Alice’s (and probably Bob’s, too, since the spectre of ac-
countability has raised its ugly head) is the possibility that someone (prob-
ably Charles) could be intercepting their messages, altering them to serve
his purposes, and passing them on as if nothing had happened. If this task
proved too difficult for the not-too-bright Charles, he could simply intercept
the message and send along his own replacement, instead. How can Alice
and Bob verify that the messages that they are receiving have passed over
the network unmolested?

Again, the notion of authentication stands in Charles’s way. Any message
passed back and forth between Alice and Bob could first be checked for
authenticity. If Alice receives a message from Bob, and she verifies it is
indeed from him by checking his digital signature, there is no way it could
have come from anyone else, so we’ve eliminated the possibility that Charles
has intercepted Bob’s message and passed along one of his own with a forged
signature.

However, what can Alice do to assure herself that Charles has not sim-
ply twiddled a few bits in the original message, retaining Bob’s signature
throughout? This requires more information about the message to be con-
tained within the signature, and we do this through the use of hash functions
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4.3.4 Hash Functions

The hash function plays a key role in modern cryptography. It is a map h :
x→ y going from a variable-length input x to a fixed-length (and generally
smaller) output y. This function has the property where it is computationally
infeasible to find two different inputs x and x′ such that h(x) = h(x′). That
is not to say that the function must be injective, necessarily, only that finding
multiple unique inputs for the same output is a hard problem.

If, when Alice signs her message to Bob, she includes in her signature S
the value of h(x), where x is the entire text of her message, Bob can verify
not only that the message in question was not only sent by Alice, but that
the contents of which were not tampered with by Charles, as Charles would
not have been able to change x without changing the value of h(x).

5 The Diffie-Hellman Key Exchange System

The first public key cryptosystem ever invented was Diffie-Hellman. Because
the computation behind public key cryptosystems takes a relatively long time
when compared to classical cryptosystems, public key cryptography is often
used in a modified role along with a symmetric cryptosystem to transmit
hidden messages. In 1976, Diffie and Hellman [2] provided a detailed method
of agreeing upon a key for a symmetric system using public key methods,
the mathematics of which were based on the discrete log problem.

5.1 Discrete Log

As we discussed earlier, modern cryptography is based around the idea of
the one-way function. Finding a good example of one of these functions is
key in the creation of a successful cryptosystem. One of the more important
examples of a one-way function is the exponential function in a large finite
field.

As anyone who has ever done some advanced arithmetic can attest, it
does not seem any easier to find xy than it is to find the inverse, logxy,
when working in R. This is not a good candidate for a one-way function.
However, if we find a finite field like (Z/qZ)∗ or F∗q (the ∗ adds the group
multiplication operation - an abelian group), there are known methods (such
as repeated-squaring) for computing xy for large x fairly quickly. However,
given an element z of the form xy, computing y = logxz is considerably more

14



difficult. This problem is called “discrete” because of the use of finite fields
(as opposed to R, which is continuous).

Therefore, given a finite group G, x, z ∈ G, z a power of x, the discrete
logarithm of z to the base x is any integer y such that xy = z.

5.2 Diffie-Hellman

The algorithm behind Diffie-Hellman is fairly straightforward. The idea is to
generate a private key that can later be used for communication, and sharing
it in a secure fashion.

The first step in the algorithm is for Alice and Bob to choose a random
integer over some interval defined by the affine transformation provided by
the symmetric key (don’t worry too much about the details). It turns out
Alice and Bob can choose this element from a finite field of the same size as
the interval prescribed. For example, if we need a random integer 0 < i <
N13, and we have a finite field Fp of prime p elements, we can let an element
of Fp correspond to an integer from 0 to p − 1 (using modular arithmetic
mod N13). There is a similar mechanism for finding a random element in Fq,
q = pk.

In order to generate the Diffie-Hellman random element in a large finite
field Fq, we begin by assuming the value of q is publicly available. We also
have some fixed g ∈ Fq, where g is a generator of F∗q, and is also public. It is
important that g be a generator, as when we generate a key from Fq, it will
be only from the powers of g. If g is a generator, a random element of F∗q
could be any element in F∗q.

5.3 Diffie-Hellman, Continued

We return now to Alice and Bob and their hidden message dilemma. They
have decided to use Diffie-Hellman to arrive at a symmetric key with which
to transact their private business.

As discussed earlier, they key in question will be a random element of F∗q,
where q is public knowledge. Alice begins by secretly choosing an arbitrary
integer 1 < a < q − 1, and then publicly computing ga ∈ Fq. Bob also
secretly chooses 1 < b < q − 1 and publicly computes gb ∈ Fq. Thus, the
secret Diffie-Hellman key becomes gab, a key which both Alice and Bob can
easily compute using the information they hold privately along with their
contemporary’s public information.
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The only information Charles has to work with is ga and gb. Diffie-
Hellman works based on the assumption that it is an intractible problem to
compute gab if one only knows ga and gb.

N.B. You can see why it was so important to choose g a generator for
F
∗
q, as powers of g can be any element in the field, increasing the size of the

keyspace, and making life difficult for Charles.

5.4 Scratching the Surface

Obviously, Diffie-Hellman is only one particular use of public key cryptog-
raphy (albeit a modified one), chosen here for its relatively straighforward
algorithm. There are many others that approach the one-way function prob-
lem in varying ways.

RSA [1], for instance, relies on the careful choice of two very large prime
numbers p and q, and computes n = pq which is used to create (using the
Euler phi-function) the user’s public and private keys. The word “careful”
is used here because it is important that the primes p and q are not easy to
guess (e.g. by looking them up in a table of primes), or relatively easy to
derive (e.g. by looking for Mersenne primes, or factors of bk ± 1 for small b
and k).

The security of RSA is based on the rather old problem of finding the com-
plete factorization of a large composite integer, not knowing the prime factors
in advance. RSA as a cryptosystem lends itself to more of the problems ad-
dressed in Section 4.3, and is used as such in many current applications.

For more information on RSA and other public key cryptosystems, I
highly recommend further reading in [7], and for a more advanced treatment
of the mathematics see [4].

6 Elliptic Curves

Here we finally begin to delve into the algebra and arithmetic of elliptic
curves, and what makes them so useful in the realm of cryptography.

We’ll begin our exploration by taking a look at the elementary facts about
elliptic curves, and follow up with their cryptographic applications.
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6.1 Elliptic Curve Basics

An elliptic curve over a field K is a cubic curve in two variables, f(X, Y ) = 0,
creating the set of points (x, y) ∈ K satisfying the equation

y2 = x3 + ax+ b.

These points, along with a single element O called the “point at infinity,”
make up an elliptic curve.

For the purposes of our discussion here, K will be either the field R (real
numbers) or the finite field Fq of q = pr elements.

The general (Weierstrass) form of the elliptic curve is:

y2 + ay = x3 + bx2 + cxy + dx+ e; a, b, c, d, e ∈ K.

6.2 Arithmetic of Elliptic Curves

What makes elliptic curves so darned important with respect to cryptography
is that the set of points on an elliptic curve form an abelian group. To show
how elliptic curves satisfy the fundamental properties of groups, along with
commutativity, we will explore the geometry of these curves.

6.3 Elliptic Curves and Abelian Groups

Let’s begin by letting E be an elliptic curve over R, with P,Q ∈ E. We can
now define the arithmetic of these curves using a few rules.

6.3.1 Additive Identity

If the point P is the “point at infinity” O, then −P = 0 and P + Q = Q.
This makes O the additive identity (like 0) for the group of points on E.
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6.3.2 Additive Inverse

Figure 5: Elliptic Curves: Additive Inverse

Assuming P 6= O (as we will for the remainder of these definitions), we
define −P , where P = (x, y) to be (x,−y). A quick look at the general
formula for elliptic curves verifies that (x,−y) ∈ E iff (x, y) ∈ E.
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6.3.3 Addition of Points on E

Figure 6: Elliptic Curves: Addition

When P and Q have different x-coordinates, then there is a line l = PQ
that intersects the curve at exactly one point R. If l is tangent to the curve
at P or Q, then R = P or R = Q, respectively. P + Q is therefore defined
to be −R (Figure 6).
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6.3.4 Addition of Points, Case 2

If Q = −P , then we define P +Q to be O, the “point at infinity.”

6.3.5 Addition of Points, Case 3

If P = Q, then l is the tangent line to the curve at P , and R is the only
other point of intersection of l with E, and we define P + Q = −R. If P is
a point of inflection, then P = R.

6.3.6 E Forms an Abelian Group

The geometric argument is just one way to prove that the definitions we have
just laid out for P +Q makes the points on E an abelian group. One could
also use real analysis or an algebraic argument, as well. For further reading
on the topic, along with the complete proofs, see [9].

6.4 Elliptic Curves over Finite Fields

Now, let K be the finite field Fq, where q = pr, and E is an elliptic curve
defined over K.

As we have seen in earlier discussions, it is important to cryptographers
that a group have a finite number of points. Finding these points therefore
becomes an important task.

E has at most 2q+ 1 Fq points: 2q pairs of (x, y) along with O, the point
at infinity. Counting points on elliptic curves is important to cryptographers
using these curves, as it’s nice to know the structure of the abelian group;
i.e. is it cyclic. Hasse’s Theorem deals with the size of N , the number of Fq
points on E, but is beyond the scope of this paper - don’t worry too much
about it. Again, if you wish to explore the mathematics a bit further, [9] is
an excellent source.

7 Elliptic Curve Cryptosystems

We now have a multiplicative group of a finite field Fq, the finite abelian
group F∗q. As with our conventional public key cryptographic examples, we
can use this abelian group to form a public key cryptosystem.
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As you recall, the discrete log problem formed a nice one-way function
for use in our cryptosystem. It would be nice if we could find an analogous
problem using elliptic curves over finite fields.

7.1 Multiplication of points on E

Earlier, we would multiply elements of F∗q in our discrete log problem. Using
elliptic curves, we now add points on an elliptic curve over a finite field.
Therefore, as we would raise an element to a power k through repeated
multiplication k times, we now use repeated addition of an element k times
(multiplication). The method of repeated doubling works quite nicely for
this.

7.1.1 Repeated Doubling

Let P be a point on the elliptic curve E defined over F∗q, and let k = 200. In
order to find kP , we can use the method of repeated doubling to do this:

200P = 2(2(2(P + 2(2(2(P + 2P )))))).

Using this method we only end up performing 7 doublings and 2 additions
of P .

7.1.2 Optimization

This is where knowing the number of points N on our curve E can be impor-
tant. If we know N , we can reduce the time estimates for repeated addition
of points on E by orders of magnitude through certain clever algorithms. For
details on this, see [4].

7.2 Labeling Plaintext Messages in E

As in our earlier examples, we need a method for encoding plaintext message
units in E. Our method earlier involved simply translating the 26 letter
alphabet to the integers 0, 1, . . . , 25. We want a method like this.

Unfortunately, there are no known polynomial time algorithms for finding
a large number of points on an arbitrary E over F∗q. We are not simply
looking for random points on E, here. As in our previous examples, we want
a systematic way of finding points on E relating somehow to the plaintext
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message p, so that going back and forth between them is made tolerable (to
a computer, at least). Therefore, we are forced to use probablistic algorithms
to do this, where the chance of failure is acceptably small.

7.3 Elliptic Curves and Discrete Log

Using the definitions above, we can now describe an analog to the discrete
log problem using elliptic curves over finite fields.

Let E be an elliptic curve defined over a finite field Fq, and let B be a
(base) point on E. The discrete log problem on E to the base B becomes:
given a point P ∈ E, it is an intractable problem to find an integer x ∈ Z
such that xB = P , if x exists.

It turns out that the elliptic curve analog of the discrete log problem
may be a harder problem than the original. The standard techniques used
on ordinary finite fields to solve the discrete log problem do not work over
elliptic curves.

This issue becomes especially important when considering the reality of
implementation issues. Because of software and hardware constraints, it
is often easiest to construct the discrete log problem over finite fields F2r ,
extension fields of F2. There are a number of specialized methods for solving
the discrete log problem in F∗2r , making the job of Charles easier unless r
is chosen to be quite large. Because these methods do not work for solving
the elliptic curve analog of discrete log, r can be chosen to be significantly
smaller, allowing for easier implementation.

8 Elliptic Curve Diffie-Hellman Analog

Again, we return to the problems of Alice and Bob in order to illustrate
how the elliptic curve discrete log analog allows us to implement the Diffie-
Hellman key exchange protocol using elliptic curve cryptography.

The first step, as in the original, is for Alice and Bob to choose a finite
field Fq, which will be made public. They also choose an elliptic curve E
defined over Fq, which is also public information. In order to construct the
key to be used with a symmetric cryptosystem, Alice and Bob must arrive
at a random point P on E. Using P , they can take its x-coordinate, which
in itself is a random element of Fq. Since q = pr, Alice and Bob can convert
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q into a random r-digit base-p integer. This will be the key they will use in
their symmetric cryptosystem.

How will Alice and Bob choose P?

8.1 ECC Diffie-Hellman, Step One

The first step in arriving at P is for Alice and Bob to publicly choose a point
B on E which will serve as their base. B will serve as a “generator” in our
field, as g served in our earlier example. The word “generator” is in quotes
here, because we do not require that B be an actual generator for F∗q. As a
matter of fact, F∗q may not even be cyclic. We would, however, prefer that
B generate a sufficiently large subgroup, whose order is very large (N or a
large divisor of N).

8.2 ECC Diffie-Hellman, Step Two

Alice now begins the generation of her secret key by choosing a random
a ∈ Z, of approximately the same order of magnitude as N . Then, she can
publicly compute aB ∈ E. Bob also privately chooses a random b ∈ Z, and
publicly computes bB ∈ E.

Therefore, the secret key is computed as

P = abB ∈ E,

which can be easily computed by either Alice or Bob, since they are in pos-
session of their private key and the public key of their partner. Charles, on
the other hand, only has knowledge of aB and bB. Without being able to
solve the elliptic curve discrete log problem, it is impossible for him to derive
abB without knowing a or b.

9 Further Study

There has been a considerable amount of handwaving here in the interests
of scope. However, in order to obtain more detail and clarity to this picture,
I suggest some further exploration.

For a (very) good introduction to cryptography as a whole, please see [7].
It has a nice, well-rounded treatment of the subject, ranging from the math
to actual code examples to the politics of encryption.
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If you require more mathematical detail in your diet, you would be well-
served to read either [4] (for an introduction to the mathematics of cryptog-
raphy) or [9] (for a detailed look at the mathematics of elliptic curves). Or
both.

Whichever texts you choose to explore, you will be happy to know that
the adventures of Alice and Bob continue to be chronicled therein, along with
their contemporaries Aniuta and Björn (and Aïda and Bernardo, and . . . ).
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